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SIMULATION OF ELECTRON BEAM TRANSPORT IN
ION-FOCUSED REGIME CONDITIONING CELLS

I. INTRODUCTION

The resistive hose instability!-!® is the primary factor limiting propagation of high
current relativistic electron beams through dense gas in a self-pinched mode. The hose
instability is a macroscopic m = 1 kink mode which disrupts the beam by amplifying
transverse beam displacements. The quantity r =t - z/c, which measures the time into the
beam pulse at a fixed axial position z, is an approximate constant of the motion for these
beams, and thus most theoretical treatments have used z and 7 (or, equivalently, § =c7) as
the independent variables instead of z and t. Theory and simulation indicate that the mode is
convective in the beam frame, so that at any given time 7 into the beam pulse, the transverse
displacement Y(z,7) grows to a maximum value Y_,(r) at some propagation distance
z = z,,(7), and then decays as the beam propagates to larger z.

The most unstable modes have wavenumber k = 0.7k, = 0.7(2x/\ 5), where ks and A4
are the betatron wavenumber and wavelength, defined by!-3

/2

)‘ﬁ 21/kp = Ztab(-ylc,/]:n):l (1)
where v is the usual Lorentz factor, a, is a characteristic beam radius, and I, is the net current
(beam current I, less plasma return current Ip)' The quantity I = mc3/e is 17 kA,
independent of beam parameters. (The Alfven limiting current I, = g9I,.) IfI;, I, energy
E = ymc?, and a, are all constant in 7, then k(1) is constant throughout the beam, and the
instability can grow coherently from the head to the tail of the beam. Theory and simulation
then predict many orders of magnitude of hose growth for typical cases of practical interest.
In experiments, "raw"” beams injected from a beam source into full density air are almost
invariably disrupted by hose instability after propagating a few betatron wavelengths.

For many purposes, the evolution of the beam radius a,(z,7) can be adequately
described using an envelope model such as the Lee-Cooper equation.!® This model assumes
that the beam expands or contracts self-similarly with the radius a, given by
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- , (2)

where e, is the normalized emittance and U = <k§r7'> = t:I,,/-ymc3 represents the pinching
effect of self-magnetic fields. A pinched equilibrium exists when e2 = y2a2U. Equation (2)
assumes the beam to b= ultrarelativistic (¥ >> 1) and paraxial. The paraxial approximation
assumes that the transverse velocity v, of beam particles is much less than the axial velocity
v, « C. The Lee-Cooper model also formally defines a, to be the rms radius and e, to be the
associated rms emittance. In addition, if the net current and beam current densities have
different radial profiles, L, should be replaced by the "effective” current I,,2-319 3 radially-
weighted measure of the net current within the beam.

If the beam characteristics are such that k g increases monotonically as a function of 7,
the coherence of the hose mode can be destroyed, so that amplification of the mode is
substantially reduced. 4 It has been recognized for some time that this can be accomplished
by tapering the propagating beam from a broad radius at the head to a much narrower radius
at the tail.#!* It is readily apparent from the pinched equilibrium condition that it is
necessary to "tailor” the emittance at injection to insure that a,(7) will be tapered during
propagation. Injecting an initially tapered a,(7) into a dense gas, without emittance tailoring,
will not lead to a tapered A 4(7) profile that is maintained during propagation.

Both analytic models*® and simulations™""!% clearly demonstrate the effectiveness of
emittance tailoring, provided the a,(7) profile is optimized so as to suppress hose throughout
the beam, and not just in the head or just in some other part of the beam.

Even with a beam that is properly emittance tailored, several e-folds of hose
amplification can be expected in typical cases. Thus, it is also necessary to limit the
amplitude of initial transverse perturbations, present in the beam at the point of injection into
dense gas, to a small fraction of the beam radius. [Actually, these perturbations can be either
displacements X (1), Y,(7) or transverse velocities (referred to as "drifts") dX (r)/dz,
dY (7)/dz.] The frequency content of these perturbations is also important. At any given
point in the beam, perturbations with frequency comparable to 7, (), where




2 2
fd(f) = wao(r)ab(r)/2c P (3)

is the dipole magnetic decay length, induce strong hose growth.! Here o.(7) is the on-axis
conductivity, which rises during the early part of the pulse and later saturates due to electron
attachment or recombination. High frequency perturbations in the beam head, where 7, is
short, are particularly dangerous. Low frequency displacements do not couple well to hose
instability and are relatively benign.

In recent years, conditioning techniques have been developed to tailor the
emittance*-6:11.12.20-27 gnq center the beam to reduce initial transverse displacements.26-3
These techniques have been implemented in experiments with the ETA?52% and ATA%3
accelerators at Lawrence Livermore National Laboratory, SuperIBEX5:12:22.23.30 g4
PULSERAD'* at the Naval Research Laboratory, and IBEX and RADLAC at the Sandia
National Laboratories.2® These experiments offer dramatic evidence of the effectiveness of
beam conditioning in stabilizing hose.

The most widely used technique for emittance tailoring involves the use of a "passive
ion-focused regime (IFR)" conditioning cell.2%23 The ion-focused regime refers to
propagation of a highly relativistic beam along a plasma channel whose charge density is less
than that of the beam.20-23.31-32 gince 4 >> 1, the repulsive force exerted on the beam by its
own radial electrostatic field E,_ is essentially canceled by the self-pinch force exerted by the
beam’s azimuthal magnetic field B,. The plasma electrons are ejected radially by E,, leaving
behind a positive ion column which pinches the beam electrostatically. The background gas
density must be sufficiently low that the plasma electrons are collisionless and can be easily
ejected. If the plasma channel is produced by the beam itself through impact ionization of an
initially neutral gas, the process is referred to as passive IFR. If the gas density and beam
pulse length are in an appropriate regime,%11.20-2531-38 the jon channel density increases
significantly during the beam pulse, and therefore the beam radius tapers down throughout
the pulse. This radius taper may be converted to an emittance taper by passing the beam
through a thick scattering foil on exit from the IFR cell.*52%23 This process is the primary
subject of the present paper; we shall present a variety of axisymmetric simulation studies

that demonstrate the dependence of the process on 2 number of beam and control parameters.




IFR propagation has been studied in other contexts by several investigators, using analytic

models,20:21.35-4044 37-39.45-48 gnd 3-D simulations*®-52 to study

axisymmetric simulations,
non-axisymmetric effects such as ion hose instability and magnetic erosion.

A variety of techniques have been used to center the beam and thus reduce the
perturbations which "seed" the instability. Passive IFR cells exert a centering force due to
wall image forces, but the effect is weak if the wall radius is considerably larger than the
beam radius, as is necessary if the cell is intended to induce radius tapering. However, it is
also possible to propagate a beam in an "active” IFR cell, wherein some external ionization
source (e.g., a laser’®42 or a magnetically-guided low energy electron beam*?) establishes the
plasma channel, and conditions are such that the beam itself does not further ionize the gas
significantly. This type of cell exerts a strong centering effect on the beam, and damps
transverse perturbations through phase mixing, provided the density profile n(r) of the ion
channel is not constant within the beam. A third technique is to propagate the beam along

cither a current-carrying narrow wire!4.26 2729

or an electrostatically-charged resistive wire.
The highly anharmonic focusing force due to the wire centers the beam and strongly damps
transverse perturbations, but can lead to undesirable emittance growth if parameters are not
chosen properly. Conditioning cells based on all of these techniques have been employed, in
tandem with passive-IFR tailoring cells, in recent experiments. Figures 1 and 2 illustrate the
configurations that have been employed. Figure 1a shows a simple passive-IFR tailoring
cell, with a thin entrance foil F1 and a thicker exit foil F2 for scattering. Figure 1b shows this
cell with an upstream magnetic focusing lens, a configuration that was employed in the ATA
experiments to provide additional control over the radius taper a,(r) induced in the cell’
Figure 2 shows three configurations for a passive-IFR tailoring cell in tandem with a
centering cell: alaser-IFR cell preceding a passive-IFR cell, often used in the ATA
experiments (Fig. 2a); a narrow high-density passive-IFR centering cell preceding a broad
lower-density passive-IFR cell, used in earlier SuperIBEX experiments'22? (Fig. 2b); and a
passive-IFR tailoring cell followed by a wire cell, used in more recent SuperIBEX
experiments!Z3 (Fig. 2c). We shall present simulation studies of all of these configurations.
It should be noted that if magnetic focusing is used throughout the beamline, as was

the case in some ATA experiments, the focusing system can be tuned to minimize the spatial




perturbations X (1), Y (7) at the point of injection to the propagation chamber. However,
doing so does not effectively suppress hose growth, since the procedure does not minimize
the transverse velocities dX /dz, dY /dz at the same location.

The organization of the paper is as follows. In Sec. II, we present studies of passive-
IFR tailoring cells, alone or in combination with focusing lenses or foils. In Sec. III, we
present studies of tandem tailoring/centering cells. Section IV discusses the use of passive-
IFR tailoring cells in multiple pulse experiments such as the Multi-Pulse Propagation
Experiment (MPPE) on ATA.> The conclusions are summarized in Sec. V. The Appendix
describes modifications to the FRIEZR simulation code*’ that was used for all studies

presented here.




II. PASSIVE IFR TAILORING CELLS

A. General Description of a Passive IFR Tailoring Cell

A passive IFR cel120-23.25.31-38 oonqicts of a chamber filled with low-density gas
(typically a few mtorr) in which the beam is propagated for a distance eoual to several
betatron wavelengths. The channel strength, and therefore the pinch force, increase
monotonically with r, the time into the beam pulse. The very front of the beam head is
unpinched, and thus expands at a constant rate characteristic of free expansion, da,/dz = A#,
where A6 is the thermal microdivergence in beam electron velocity angles. The weakly
pinched beam head expands rapidly, but the beam may need to propagate a long way before
the beam head reaches equilibrium at a large radius. In fact, at any given propagation .
distance z, there will always be a weakly pinched portion of the beam head which is still
expanding, and for the typical short lengths of IFR conditioning cells, this expanding region
may constitute a substantial fraction of the pulse. The propagation distance required for
equilibration decreases as a function of r. The tail quickly reaches an equilibrium radius that
(if entrance conditions are chosen optimally) is comparable to the initial radius. If the cell is
long enough, the beam evolves toward an equilibrium in which the radius decreases
monotonically as a function of 7. The normalized emittance, e, = ya,A8, typically will not
develop this monotonic tap-r within the IFR cell; in many cases it is approximately true that
A0 decreases as a,, increases, so that e, remains roughly constant. However, at the end of the
cell the beam is passed through an exit foil which scatters the electrons sufficiently to
increase A6 to a value which is roughly uniform over the duration of the pulse. The radius
taper is thus effectively converted to an emittance taper.

A simple, qualitative model of passive IFR conditioning may thus be based on the
following assumptions: (1) That e, is constant within the cell. (2) That ion channel motion
may be neglected. (3) That the beam expands self-similarly, and that the beam and channel
radial profiles are similar. (4) That a,(z, 7) is equal to the smaller of the equilibrium radius
8,4(7) and the free expansion radius a.,(z). (5) That the beam is neither converging nor
diverging at injection, i.e., that da,/dz = 0 at z = 0. The resulting analytic model is presented

more completely and in a somewhat different form in Ref. 20, and is an extension of a




steady-state model by Briggs.36 It provides considerable insight and is useful for scaling,
although all of these assumptions are of limited validity. In subsequent sections, we shall
elaborate on the limitations of these assumptions and use particle simulations to calculate
beam evolution more exactly.

With these assumptions, we proceed to calculate the beam radius and emittance, We
assume the beam is injected into the IFR cell with radius a,, thermal microdivergence A6,
and normalized emittance ¢, = ya,A6,. The density of ions created by beam-impact

ionization is given by?%36

ani/ar =v.n, (4)

where ny(r, 7,z) and ny(r,7,z) are the beam and ion densities, respectively, and v, is the gas
ionization rate. In air at pressure P, v, « P(torr) nsec’l. In the body of the beam, the radius
8,4(7) is given by the Bennett pinch condition!?2026

1/2
aeq(r) 0 (Io/‘yfIb) ’ (5)
The ratio f(7) = ny(r = 0,7)/my(r = 0, 7) is used to characterize the strength of the channel.
Equaticon (5) is the equilibrium solution to the Lee-Cooper envelope equation (2) with I,
replaced by fI,. The radius a_,(z) = a,(7 = 0, z) at the beam head is specified by free

expansion,

2 22,2 21/2
a " (ao + €2 /7 go) - eoz/yao. (6)

The free expansion limit can be obtained from Eq. (2) with U =0, and reduces to the second
expression in Eq. (6) when a,, >>a,.}? If 7, is defined as some suitable reference point in
the body or tail of the beam, the ratio a,,/a.q(7,) may be referred to as the radius tailoring
ratio.

In the region of the beam that has reached equilibrium, the microdivergence is given by

1/2
Aoeq - (fIb/-on) ' (7)




and increases monotonically with . The beam radius taper is converted to the desired
emittance taper by passing the beam through a thick scattering foil located at z = z;. The foil
adds a scattering angle A6, to the beam,!® resulting in a thermal microdivergence given by

2 2 2
Ao (zf) = Aasc + Aeeq' (8)

The emittance ey(z) at the beam head after passing through the foil is thus

evosczf
eH(zf) = T. (9)

Similarly, the emittance e|(z) in the beam tail is

¥I 11/2 . fIb 1/2
CT(zf’ T) = Go f_I; Aesc + E (10)

The ratio e (z;, 0)/e (2, 7p) = ey/ e from (9) and (10) defines an emittance tailoring ratio.
To complete the calculation, it is necessary to specify the neutralization fraction f(r). For a
beam with constant current,36 f = v;7/2. For arbitrary I,(7), y(r) and e () profilesatz =0,

f can be estimated from?°
v, e ’ 7 I ()
£(1) = = —— Idr' _— (11)
2 W::b(r) 0 o

As an example, consider beam parameters typical of the ATA Multi-Pulse Propagation
Experiment’ (MPPE): v = 20, a9 =0.5 cm, ey = 0.5 rad-cm, propagating 60 cm in 10 mtorr
of air followed by a scattering foil with A8, = 0.09. The ionization rate at this density is
v; = 107 sec’’. From (4) and (9), the radius a,(z;, 0) and emittance e _(z;, 0) in the beam head
at z; = 60 cm are 3.0 cm and 5.4 rad-cm, respectively. If the beam is 30 nsec long, the tail
radius in equilibrium from (8) is 0.49 cm. The final emittance from (9) is eq(z,) = 1.0 rad-

cm, resulting in a ratio ey/ey = 5.4. This tailoring ratio is in the range considered suitable




for reducing the growth of the resistive hose instability to an acceptable level when the beam
is subsequently propagated in dense gas.

B. Overview of FRIEZR Simulation Code

The simple model outlined in the previous section neglects a number of effects which
may be treated more precisely using time-dependent envelope codes or full particle
simulation codes such as FRIEZR.*’ First, there is a transition region within the beam pulse
where the beam is weakly pinched and has not yet reached an equilibrium. In many
experimental situations, the tailoring cell is so short that a large fraction of the beam has not
yet reached equilibrium at the end of the cell, so the analytical model cannot be relied on for
making detailed predictions of emittance tailoring profiles. Full simulation codes such as
FRIEZR include a number of physical effects which are usually omitted from simpler
models. For example, the FRIEZR code includes beam energy changes arising from the
inductive electric field and does not make the ultrarelativistic and paraxial approximations in
treating beam dynamics. Particle simulations also allow the beam current density profile to
evolve self-consistently and thus do not make the self-similar assumptions used in envelc ps
models. In addition, FRIEZR can treat more complicated beamline configurations and multi-
stage conditioning cells. These beamline configurations may include vacuum transport
regions with solenoidal fields or discrete focusing lenses as well as centering cells employing
preionized plasma channels.

In the remainder of this paper, we concentrate on simulation studies that are chosen to
model two recent series of experiments conducted with the ATA accelerator’ at Lawrence
Livermore National Laboratory, and the SuperIBEX beam generator®-12:2022.30 g¢ the Naval
Research Laboratory. In this particular series of ATA experiments, known as the Multi-Pulse
Propagation Experiment (MPPE), a train of up to five 10 MeV pulses, separated by several

5 was conditioned and propagated. (Earlier single pulse experiments at ATA used

msec,
energies in excess of 40 MeV.) SuperIBEX is a single pulse device which produces a 4.5
MeV beam at currents which may exceed 20 kA. Table I lists the bean. and conditioning cell
parameters used (except as noted specifically in the text) in all of our simulations of these

experiments. In all of the simulations, the gas in the IFR tailoring cell was assumed to be air.




(Several other gases as well as air were used in the experiments.) The plasma electrons were

assumed in all cases to be ejected instantaneously from the channel.

TABLEI. Beam and IFR cell parameters for analytical and simulation examples.

Parameter Symbol  Units ATA SuperlBEX
Beam energy ¥ - 21 10

Beam current Lo kA 6 15

Initial half-current beam radius a,a;p0) o 0.50 0.60
Initial rms beam radius a0 cm 0.60 0.72
Current rise length T nsec 10 10

Pulse length LES nsec 40 26.7
Initial rms emittance e, = ¢,(0) rad-cm 048 1.08
Initial half-current emittance €ho rad-cm 0.40 0.90

IFR cell rudius . cm 75 25/5
IFR cell pressure P mtorr 2-50 20/5-100

The primary quantity of interest from the simulations is the beam radius a,(7) at the

IFR cell exit foil. Up to this point, we have been rather cavalier in discussing the "beam

radius” a,. Since pinched beams generally have rounded beam current density profiles J,(r),

there are potentially many ways to define a characteristic beam radius and emittance in

particle simulation codes or experimental data. The rms radius a_, is the quantity that

appears in the Lee-Cooper definition of emittance.!® However, the rms radius can be

dominated by a small number of beam electrons in a "halo" at large radius. We generally

find the half-current radius to be a more useful indication of the beam width. For any

specific radial profile, a;, /a; , has a well-defined value, e.g., ~1.2 for a gaussian. If this

ratio becomes large, it is an indication of change in the radial profile, typically with the

growth of radial wings.
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The beam in FRIEZR is defined by a half-current radius at injection a;,,(z =0) = a,,
nominal beam energy y,mc?, peak current I, current rise time ,, pulse length r, and initial
rms emittance e, Beam simulation particles are loaded with a uniform distribution in the the
axial variable 7, but the charge on the simulation particles is weighted by W(r) = I(7)/1y,.
In most cases, the current is assumed to have the form

Ib(r) = Iotanh(flrr), (12)

Particles are distributed in the radial direction with an assumed Gaussian current density
profile of the form:
I

b 2, 2
Jb(r) =-— exp (r /aG), (13)

Ta
G

where ag and I, may vary with r. For a Gaussian, ag « 1.2a,,. [FRIEZR has options for a
number of I,(7) and J,(r) profiles other than those in Egs. (12) and (13).] The initial
normalized transverse velocity v ,/c for individual simulation particles is chosen from a
Maxwellian distribution with a thermal microdivergence Ay, which is related to the initial
emittance by

Aathg eo/‘yoams (0) . (14)

The studies presented here do not include y(r) variations which may arise from experimental
voltage variations or space charge depression. Space charge depression effects are relatively
unimportant for IFR transport in the ATA regime but can be significant for Super]BEX.2
The FRIEZR code uses an unconventional coordinate system which moves at the speed
of light with r, t and 7 =t - z/c as the independent variables. (Note that much of the previous
literature on FRIEZR and related simulation codes has used § = cr rather than r as the axial
coordinate for the distance from the beam head.) The z coordinate does not appear explicitly
in the model equations, so z-dependent beamline changes must be transformed to the (1, t, 7)
variables using z = t - cr. Data such as the beam radius or emittance are usually plotted as

functions of r at fixed z-locations in order to facilitate comparisons with time-resolved beam

1




diagnostics. The implications of this coordinate system and other numerical details are
discussed in Ref. 47. The Appendix includes additional discussion of numerics as well as a
description of features added specifically to treat conditioning cells. These features include
beam impact ionization, channel ion motion, scattering and focusing by thin foils, discrete
focusing lenses, and z-dependent wall radius, preionized channel density and/or gas pressure.

FRIEZR has been used to study inductive erosion in preionized channels,*’ wakefield
effects in laser propagation through a plasma,? beam transport in the ATA*S and RLA*6
accelerators, beam propagation ir passive IFR cells,” and both ballistic and pinched

propagation in heavy ion fusion target chambers.>4

C. Non-Diverging Beam Injected into a Passive-IFR Cell

In this section, we consider a simple passive-IFR cell, as shown in Fig. 1a. We
continue to assume, for the present, that the beam is neither converging nor diverging at
injection, i.e., that day/dz = 0 at z = 0. In so doing, we are neglecting the focusing effect of
the entrance foil, and excluding the possibility of a focusing lens upstream. We consider five
cases summarized in Table II, each representing a specified variation of the ATA beam of
Table 1. The beam characteristics at the output end of the tailoring cell (z = 90 cm) are
summarized in Table II in terms of a, (7 = 0), the half-current radius of the beam head; and
a) (7 = 40nsec), a,, (7 = 40), e (7 = 40), the half-radius, rms radius, and rms normalized
emittance at the beam tail.

In Case 1-A, we specify that the channel ions are stationary, and the initial emittance is
roughly matched to the pinch force exerted by the beam-ionized channel. The tail radius thus
remains essentially constant, while the rest of the beam expands. Figure 3 shows that the
emittance remains reasonably constant throughout the beam. Thus the assumptions of the
analytic theory of Sec. II.A are reasonably well satisfied. Indeed, Fig. 4 shows that the
output beam radius profile a;,(z = 90, r) agrees well with the analytic theory, particularly in
the well-pinched tail.

12




TABLE II. Summary of FRIEZR simulations of simple passive IFR tailoring cells. Output
quantities (last four columns) are at z = 90 cm and 7 = 0 (beam head) or r = 40 nsec (beam
tail).

Case Comment e, P a,(r=0) a,,(r=40) a,,,(40) ¢,(40)
rad-cm mtorr cm cm cm rad-cm
1-A Fixed ions 0.48 5 28 0.48 0.62 0.50
1-B LowP 0.48 5 28 0.38 0.57 0.55
1-C HighP 0.48 20 28 031 0.55 1.05
1-D High e, P 0.96 20 4.2 041 0.61 1.2
1-E a,=1.0cm 0.96 20 20 0.57 0.93 1.95

Case 1-B is similar except that ion dynamics are included (and also in all the remaining
cases discussed in this paper). In the beam tail, the ions collapse toward the axis under the
influence of the beam’s radial electrostatic field. 2044 For f << 1, the characteristic time scale

for ion channel collapse is

/ /2

.= (wab/2c) (mi/me) 1/2 (Io/Ib) 1 (15)

The ion collapse increases the strength of the pinch force on the beam, and thus reduces the
beam tail radius a,,, at z = 90 cm from 0.48 cm in Case 1-A to 0.38 cm in Case 1-B. This
effect is generally desirable, although ion channel motion may also lead to beam degradation
through ion hose instability.m'“"” ! Figure 5 shows the evolution of a,,(7) as the beam is
transported through the IFR cell to z = 30, 90, and 150 cm. In agreement with the analytic
model, the head expands freely while the tail rapidly reaches equilibrium. There is a
transition region (3 nsec < 7 < 17 nsec) where the beam expands at a reduced rate. Figure 6

shows the expansion rate da,,,/dz as a function of 7 at the same three z-locations. (In this
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particular figure, we plot the rms radius rather than the half-current radius.) At r = 0, the
bearn continues to expand at a constant rate equal to the free expansion rate. An approximate
equilibrium is reached (da,,/dz = 0) in the tail of the beam, with the equilibrium region
moving forward as the beam propagates further in z. Thus the tapered rms radius a (1)
continues to evolve as the beam propagates through a cell of this length. The "equilibrium”
radius in the beam tail actually is seen to expand slowly. This occurs for two reasons. First,
the strength of the channel ionized by the beam gradually drops as the beam head expands,
from its initial value fxv, 7 for a pencil beam, toward the Briggs®® equilibrium value fev,7/2.
Secondly, the collapse of the ion channel causes the beam radial density profile n,(r) to form
a mild halo, which increases the ratio a, /a, , from its initial value, and thus increases
da,/dz. It can be seen in Fig. 7 that a,, /a, , in the tail increases to 1.46, from its initial
value of 1.2.

In Case 1-C, the gas density, and therefore the quantity f, which is an index of the
pinch strength, are increased by a factor of four. The simple model of Sec. IIA would
indicate that a,, is reduced by a factor of two. However, a more detailed analysis®® reveals
that the beam cannot collapse to an equilibrium radius less than ~a_/t2; if the initial
emittance e, is too small to balance the pinch force, then the emittance must increase as the
beam equilibrates. (The opposite is not true: if e is too large to balance the pinch force, the
beam can expand with little or no emittance increase.) Indeed, Fig. 8 and Table II show that
a;, collapses to 0.62a,, and Fig. 3 clearly shows the emittance increase in the tail that is
necessary to prevent further radial collapse. The increase in a,, /a,,, in the tail, from its
initial value of 1.2 for a gaussian profile to its final value of 1.8, is an indication of the profile
deformation (enhancement of the radial wings) that accompanies the emittance increase. The
tailoring induced in this case would not be ideal for typical propagation applications, since
the taper is restricted to a small region 7 < 10 nsec in the head, leaving the remainder of the
beam essentially untailored.

In case 1-D, the initial beam parameters are similar to Case 1-C except that the
emittance e is doubled. As a result, the tail is initially close to equilibrium, and the
evolution is similar to Case 1-B but at twice the radius. However, in this case the outer part

of the beam head contacts the cell wall at r = 7.5 cm, and is lost. As a result, e decreases in
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the head, as is seen in Fig. 3. Loss of part of the beam head limits emittance tailoring and is
to be avoided in practical implementations.

Case 1-E has the same initial emittance as Case 1-D, but the initial radius a, is doubled
while the initial velocity spread A6 is halved. As in Case 1-C, the initial emittance is
insufficient to support the pinch force in the tail, so that a,,, collapses in the tail to 0.57a,,,
while a, /a, , increases to 1.7 (indicative of halo formation), and e, increases in the tail, as
is evident in Fig. 3.

D. Effects of IFR Entrance Foil and Upstream Focusing Lenses

In previous sections, it was assumed that the beam was neither converging nor
diverging at entry to the IFR cell, i.c. da,/dz = 0 at z = 0 for all beam slices. If a conducting
foil is present at entry to the cell, it acts as a focusing lens by shorting out the beam’s space
charge field.2%3%-3% The focusing angle decreases with v and is roughly proportional to
I(r, ), the current enclosed within radius r. The focusing strength thus varies with time into
the pulse and is nonlinear in r. Foil focusing thus is not easily controlled and tends to be
disruptive. However, it is also possible to introduce one or more magnetic lenses in the
vacuum transport region ahead of the IFR entrance foil. These lenses can be precisely
controlled, and can be used to partially compensate for foil effects or otherwise to fine-tune
the radius profile. This method was extensively and successfully employed in the MPPE
experiments.’

In this section, we present simulations of the conditioning configuration shown in Fig.
1b: a focusing lens L located at z = 6 cm, followed by a vacuum transport region, and then
by a passive-IFR tailoring cell with an entry foil F1 at z = 126 cm and a thicker exit foil F2 at
z = 176 cm. The beam parameters are representative of the ATA experiments; they are as
listed in Table I except that in this section the beam rise time is set to r, = 20 nsec, and (in all
cases except 2-B) ¢, = 0.24 rad-cm. The beam is injected with a relatively large radius a;;.
The values of a;;; and of the lens focal length f; are specified in Table IIl. In all cases except
2-G and 2-J, the entry foil F1 is effectively a 10 mil carbon foil, scattering the beam through
an angular spread A6, = 0.045 radians.
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The results of the simulations are shown in Table III and Figs. 9-13. The effectiveness
of the tailoring process may be estimated by comparing the radii a,,, at the end of the IFR
cell, given in Table III for r = 0, 20 and 40 nsec, the head, middle and tail of the beam,

respectively.

TABLE IIl. Summary of FRIEZR simulations using an upstream focusing lens and a 50 cm
long passive IFR cell with air at 6 mtorr. All lengths are in cm.

Case fL By a)n(r=0) 8,,(20) a,,(40) Comments

cm cm cm cm cm
2-A 114 1.5 2.25 1.48 1.10 Small a,,; large f,
2-B 114 1.5 2.6 1.54 1.24 ¢, =0.48 rad-cm
2-C 114 20 225 1.47 0.84 Small a,,; large
2-D 114 25 24 1.59 0.92 fi too large
2-E 114 3.5 2.55 2.05 1.61 Large a,; and fi_
2-F 100 25 2.65 1.51 0.64 Near optimum f;_
2-G 90 25 25 0.99 0.39 A6, =0.031
2-H 90 25 295 1.44 0.57 Near optimum f;_
2-J 90 25 34 2.25 1.05 a6, =0.063
2K 80 25 3.2 1.51 0.67 Near optimum f;
2-L 70 25 3.65 1.80 0.92 f; too short

For these conditions, focal lengths f; > 100 cm (Cases 2-A through 2-E) lead to poor
tailoring. Although the distance between the lens and the entrance foil is 120 cm, Figure 9,
which plots a, ,(z) for three beam slices taken from simulation Case 2-D, shows that beam
space charge repulsion extends the lens focal length considerably, particularly in the high-
current part of the beam (7 = 20 and 40 nsec). Because the entire beam has a large radius and
is converging at the IFR entry foil, the beam subsequently overfocuses within the IFR cell
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and rebounds, leading to a rather large tail radius (20.92 cm) at the exit foil, and insufficient
tapering. Note the effect of foil focusing by the IFR entrance foil, which is evident in Fig. 9
as a sudden change in the slope of the a;;(z) trajectory at z = 126 cm. This foil heats the
beam due to both scattering and anharmonic focusing. Beyond this point, the beam is
pinched by the ion channel which slows the expansion in the beam body.

Figure 10 plots a;,,(z) for the same three beam slices when the focal length is reduced
to 90 cm (Case 2-H). The 7 = 4 nsec and 20 nsec beam slices now focus well ahead of the
entrance foil while the r = 40 nsec beam slice focuses just ahead of the foil. This variation in
the focal point serves to increase the beam head radius and decrease the minimum radius,
thus substantially improving the radius taper after transiting the tailoring cell.

Figure 11 plots a;,(7) just after the final scattering foil for f; =70, 90 and 114 cm
(Cases 2-L, 2-H and 2-D). The 90 cm focal length produces the smallest beam radius in the
body, while the other two cases produce nearly identical results for 7 > 23 nsec. The
corresponding final emittance profiles are shown in Fig. 12; the f; = 90 cm case produces an
emittance variation of a factor of 3.

The tapered shape of the beam radius a; /() is often quite sensitive to the thickness of
the IFR entrance foil F1. This effect has been noted in IFR conditioning cell experiments
with both MPPE® and SuperIBEX.!2%? Figure 13 plots the final radius a, () for Cases 2-G,
2-H and 2-K, which are similar except for thickness of the IFR cell entrance foil. In these
three cases, the entrance foil scattering angle was A8 = 0.031, 0.045 and 0.063, respectively,
corresponding to carbon foil thicknesses of 5, 10 and 20 mils for the 10 MeV MPPE beam.
As expected, the thicker foil produces a significantly larger beam radius, but the tailoring is
good in all three cases.
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III. MULTI-STAGE CONDITIONING CELLS

As we have seen, passive IFR cells can be quite effective in tailoring the beam
emittance so as to reduce the growth rate of the hose instability upon subsequent injection
into the atmosphere. However, the possibility of instability growth remains, albeit at a lesser
rate. Since the beam produced in an accelerator typically has significant transverse
fluctuations which can provide the seed for hose growth, it is also necessary to center the
beam to damp this type of noise. In order to do this, it is necessary to pass the beam through
a centering cell either before or after the IFR tailoring cell. In this section, we shall discuss
various options for centering the beam, and the ways in which their compatibility with
tailoring cells can be optimized. We shall not study the centering process itself (all of the
simulation studies in this paper are axisymmetric), but we shall infer the requirements for and
consequences of the centering process. We shall consider three types of centering cells: (A)
laser-ionized IFR channels, (B) passive IFR cells with narrow walls, filled with gas at

relatively high density, and (C) wire cells.

A. Preionized Channel Centering Cell with Passive IFR Tailoring Cell

In some of the ATA experiments, a KrF laser was used to ionize benzene, in order to
create an IFR channel that was used to center a beam 45394145 In this scheme, the gas
density is chosen low enough (< 1 mtorr) so that further ionization of the gas by the electron
beam: can be neglected. This beam centering technique was at times employed inside the
accelerator as well as in a separate centering cell. A passive-IFR tailoring cell, containing
gas at higher pressure was located after the centering cell. 4> The success of this technique
depends on keeping the beam radius narrow at the point of injection to the IFR tailoring cell,
and the microdivergence at this point matched to the IFR pinch force.

In Table IV, we summarize the conditions for several FRIEZR simulations that
illustrate transport through the complete active IFR/passive IFR conditioning system. In all
cases, the laser-IFR cell was 120 cm long, with a pre-ionized channel with radius
a, = 0.8 cm. The ion channel density was assumed to have an on-axis density n,, and radius
«, and the line-integrated channel strength f, = NNy, = (¥n;;8%,)/(Ipo/ec). A foil separated
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the laser-IFR cell from a passive IFR cell 90 cm in length, filled with air at density 5 mtorr.
These conditions were chosen as representative of the MPPE experiment on ATA, and the
beam parameicrs were those chosen in Sec. I1.C. to represent the ATA beam, except that
¢, = 0.36 rad-cm. (In reality, this configuration was only used on earlier ATA experiments*
which had beam energies of 40 MeV; an active IFR cell was only used on MPPE in
conjunction with a focusing lens and vacuum transport region® of the sort described in the
previous section.) The results are summarized in Table IV and Figs. 14-16.

TABLE IV. Summary of FRIEZR simulations using a 120 cm long laser-IFR centering cell
followed by a 90 cm long passive IFR tailoring cell with air at 5 mtorr. The radius a_,, is an
average beam radius in the middle of the IFR centering cell (z = 60 cm). The beam head,
body and tail radii at the exit of the IFR tailoring cell (z = 210 cm) are denoted by the
quantities a,,,(4), a,,(20) and a,;,(40) which are taken at r = 4, 20 and 40 nsec, respectively.

Case f Aé,, 8en a;(4) a;5(20) a;;(40) Comments

cm cm cm cm
3-A 0.005 0.032 1.20 34 193 1.48 f, too small
3-B 005 0.032 0.58 3.1 22 0.68 Near optimum f,
3-C 0.15 0.032 042 40 3.1 1.08 f, too large
3-D 0.10 0.045 0.39 35 24 0.67 e, =0.24 rad-cm
3-E 0.05 0.045 0.58 37 28 0.92 Thicker foil
3-F 0.02 0.032 0.54 29 2.08 0.68 Near optimum f_
3-G Var.  0.032 047 29 1.85 0.78 f,=0.05-0.01

("Laser-timed")

Figures 14 and 15 show a,,(7) at the end of the tailoring cell (z = 210 cm), and the
emittance after passing through an exit foil, for three cases. These figures illustrate the effect
of varying the ion channel strength f in the centering cell. For f, = 0.005 (Case 3-A of Table
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IV), the ion channel is so weak that the beam expands to an undesirably large radius
a;, = 1.1 cm in the centering cell. It is underpressured at injection to the tailoring cell. The
beam tail expands a bit more in the tailoring cell (due to the focusing effect of the entrance
foil); the head, with its low emittance, expands only to a,, = 3.4 cm by the end of the cell,
and the result is a poorly tailored profile with emittance ratio less than 2:1 after passing
through the exit foil. In Case 3-B, the laser channel strength f = 0.05 is well matched to the
subsequent IFR cell. Unlike the previous case, the beam enters the tailoring cell with
suitably small radius (~0.6 cm). The tail radius at exit from the tailoring cell is 0.68 cm,
close to the injection value, while the head radius increases to 3.1 cm. Figure 15 shows the
emittance is well tailored at exit, with a ratio of 3:1 from: head to tail. In Case 3-C, the laser
channel is so strong, at f, = 0.15, that the beam emittance increases considerably in the laser-
IFR cell. Upon injection to the tailoring cell, the beam is overpressured and expands
considerably in the tailoring cell, again leading to poor emittance tailoring.

Figure 16 shows a; () at three different locations, for the successful Case 3-B. At
z = 60 cm in the laser-IFR cell, the radius is relatively constant except for an expanded blip at
r = 18 nsec. This perturbation is due to the nearly coherent collapse of the ion channel at this
point. This type of ion dynamics must be monitored; it can sometimes (but not in this case)
degrade the beam tailoring. Atz = 180 cm (60 cm into the tailoring cell), it is evident that
the beam head has not had time to expand sufficiently, but by the end of the tailoring cell at
z = 210 cm, the tailoring profile is suitable.

There are other parameters available to optimize the matching of the laser-IFR
centering cell and the passive IFR tailoring cell. In some experiments at ATA,*" the strength
of the laser channel was reduced at the end of the laser-IFR cell, thus causing the beam radius
to increase slightly prior to injection into the conditioning cell. (This is done by varying the
density of benzene, the laser target gas, as a function of z.) The diverging character of the
beam, da,/dz > 0 as the beam strikes the entry foil to the IFR tailoring cell, can be adjusted to
improve the tailoring. In the ATA experiments, this technique was used to substantially
reduce hose growth when the beam was subsequently propagated in dense gas.* In Case 3-G
of Table IV, the ion channel strength was ramped down linearly from 0.05 to 0.01 between
z =60 and 120 cm. For these particular parameters, the resulting tailoring profile is found to
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be similar to that obtained by having a constant f_ = 0.02. At higher tailoring cell pressures,
ramping down the channel strength prior to injection into the IFR tailoring cell frequently is
found to alter the radius profile substantially.

B. Two-Stage Passive IFR Cells

Femsler, et al.,2? have calculated the centering of a beam by a narrow high-density
passive IFR cell. A cell of this type has been deployed as the first stage of a two-stage
passive IFR cell in experiments with the SuperIBEX beam.!2?3 The configuration is shown
schematically in Fig. 2b. In these experiments, the centering cell (first stage) was 80 cm
long, with wall radius a,, = 2.5 cm, and gas pressure P, = 20 mtorr. The tailoring cell
(second stage) was 40 cm long, with 5 cm wall radius and gas pressure 3-10 mtorr. In some
cases, the two sections were separated by a thin foil; in others, an aperture was used in
conjunction with differential pumping to maintain the pressure difference between the two
stages. We have performed a simulation study of this two-stage conditioning scheme, using
these device parameters and SuperIBEX beam parameters as specified in the last column of
Table 1. We report here on three simulation cases; further details will be reported elsewhere.

In Case 4-A, the pressure in the tailoring cell was P, = 10 mtorr, and there was no foil
(and therefore no scattering or focusing) between the two stages. Case 4-B was similar
except that P, = 5 mtorr. Case 4-C was similar to Case 4-A, except that the two passive-IFR
zones were separated by a foil; foil focusing was modeled using the usual thin lens
approximation.”

Figure 17 shows the beam radius at z = 50 cm (near the middle of the centering cell)
and 120 cm (at the exit of the tailoring cell), for the foilless 10 mtorr Case 4-A. There is
some tailoring even in the narrow centering cell, and the continued evolution to a tapered
profile in the tailoring cell is evident. The final radius taper at z = 120 cm goes from 2.5 cm
in the beam head to 0.7 cm at 7 = 27 nsec. The flat profile of a,,,(7) for 7 < 6 ns is
indicative of a problem: the head of the beam scrapes the wall of the narrow centering cell,
current is lost, and the half-current radius is restricted to a,,, = a,/t2 = 1.8 cm when the

beam fills the narrow centering pipe.
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Figure 18 compares a, (1) at the exit of the IFR tailoring cell for the three cases. Case
4-A shows the most satisfactorily tailored profile. In Case 4-B, with tailoring pressure
P2 = 5 mtorr, the beam was mismatched with too large an emittance at injection to the
tailoring cell. As a result, the tail expands, and the profile of a;(7) at exit is rather flat,
tapering by only a factor of two from head to tail. The inclusion of foil focusing (Case 4-C)
has disastrous consequences. In the low current portion of the beam head (1-3 kA), the
effective focal length for the tailoring cell entrance foil is 10 to 30 cm,; this limits subsequent
beam expansion and is responsible for the large dip in the radius seen at r = § nsec. In the
high current beam body, the foil focusing effects are much stronger, with the focusing angle
65 ~ 0.2-0.3. This part of the beam is overfocused, and expands rapidly after reaching its
initial focus, as is evident in Fig. 18 in the region 10 nsec < r < 20 nsec. Indeed, the latter
half of the beam scrapes the wall of the tailoring cell, resulting in the loss of 3 to 4 kA (in
addition to the loss of approximately 2 kA in the centering cell) from the original peak
current of 15 kA. This is apparent in the plots of I (r), at exit from the tailoring cell, shown
in Fig. 19 for Cases 4-A and 4-C.

To avoid beam degradation resulting from foil focusing, a "foilless" two-stage IFR cell
was designed and installed on SuperIBEX. This configuration used an aperture combined
with differential pumping to generate the desired density difference between the two stages.
It produced some promising results but often exhibited substantial current loss, and did not
usually generate well-tailored pulses. Simulations of this configuration were sensitive to the
assumed scale length for the pressure gradient between the two stages; a long gradient scale
length often caused substantial current loss near the end of the centering cell in the
simulations. The experimental results have been described by Peyser, et al.2> and Murphy, et
al ¥

C. IFR and Wire Cell Hybrids

In earlier experiments such as those described in Secs. ITI.A and B, the beam traversed
the centering cell first, followed by the IFR tailoring cell, which was terminated with a thick
scattering foil to freeze in the emittance tailoring. Since the beam is subject to little or no

centering force (particularly in the beam head) in a passive IFR tailoring cell, the beam may
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drift off-axis during the tailoring stage, thus amplifying any initial transverse velocity
perturbations. These perturbations subsequently couple very effectively to hose instability.
Thus, it would be clearly advantageous to center the all of the beam after it has been tailored.

Active wire cells provide an effective means for centering a beam. In such devices, a
thin wire carrying a current I, ~ (0.1-0.5)I, provides a strongly anharmonic pinching
magnetic field B,, which centers the beam and damps transverse perturbations by phase
mixing. The cell may be operated in vacuum or at gas densities as high as 1 atm. In vacuum,
the wire produces the same sort of pinch force on an ultrarelativistic beam as a narrow
preionized ion channel. (The laser-IFR centering cell on ATA was often referred to as a
"wire zone" for this reason.) In practice, it is convenient to operate a wire cell in full density
air, but the situation is then complicated by the charge and current distributions induced in
the air, and resistive hose instabilities may be excited in the wire cell if the wire current is too
low. Wire cells operating in fu"* density air were first developed by Frost?® and have been
deployed on IBEX and RADLAC at Sandia National Laboratories and on SuperIBEX at the
Naval Research Laboratory.!2-3° These devices are often referred to as "gas B, cells.”

In a wire cell, a beam reaches an equilibrium with transverse temperature characterized
by a thermal spread A6 = (21,,/'710)1’2 where [ = 17 kA. In general, this represents
substantial heating of the beam, and is incompatible with the requirement of low beam
emittance on entry to a passive IFR tailoring cell unless the wire current is much smaller than
the peak beam current. It is not possible for gas B, cells to operate in the small I, regime
due to hose instability growth in the wire cell itself. It is possible in principle to operate a
vacuum wire cell with very small I, but the centering cell length would have to be
substantially increased, and the problein of beam drifts in the IFR tailoring cell would persist.
Thus, wire cells are generally unsuitable for use prior to an IFR tailoring cell. However, wire
cells function very effectively when located after an IFR tailoring cell. In addition to
centering the beam, the transverse heating of the beam by the wire converts the radius taper
to an emittance taper; it is then not necessary to use a thick scattering foil for this purpose.
Simulations of wire cells in both vacuum and gas indicate that the passive-IFR/wire cell
configuration is very effective in tailoring, centering, and damping transverse fluctuations on
the beam. These results will be discussed in more detail in a future publication. A two-stage
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conditioning cell consisting of a passive IFR cell operating at 10 mtorr followed by a gas B ;-
cell with I, « 5-9 kA has recently been installed on SuperIBEX.'2-3 This configuration,
which is shown schematically in Fig. 2c, appears to produce well-tailored pulses and shows
significant promise in reducing hose instability growth.
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IV. MULTI-PULSE IFR CHANNEL PHYSICS

Some potential applications of intense relativistic electron beams require a series or
burst of pulses with separation time 7, << 102 sec. These applications include high energy
electron beam welding in dense gases®® and long-range propagation in the atmosphere. %%
Questions arise as to possible effects which could make a passive IFR cell unsuitable for
multi-pulse applications. For example, does the first pulse leave behind so much plasma that
subsequent pulses are adversely affected? Do the early pulses bore a hole in the neutral gas,
so that subsequent pulses produce a weaker ion channel? This section discusses the physics
of a passive IFR cell in multi-pulse operation and addresses the fundamental question of
whether the channel parameters will vary substantially from pulse to pulse.

IFR channel physics for multiple beam pulses can be thought of as proceeding in three
stages. The first stage covers the period 1 < 1, (typically tens of nsec) during which the
electron beam is present. During this stage, the electron beam creates a plasma channel at a
rate v; = 10° P where the pressure P is in mtorr.2%3¢ Plasma electrons are quickly accelerated
to energies of >100 keV by the space charge field of the beam and are radially expelled,
leaving behind an ion channel to pinch the beam. This field also causes the ion channel to
collapse toward the axis on a time scale 7_ given by Eq. (14). Typically, 7. < Tor although
the collapse time for an individual ion depends on the time history of I, and a, after the ion
was created. Because of the distribution of ion creation times, ion channel collapse heats the
ions to a temperature of the order of the electrostatic potential well. These ions may also
produce significant impact jonization.2® At the end of the first pulse, the typical gas density
is several orders of magnitude larger than the beam or ion channel densities, so the plasma is
still weakly ionized. At these densities, the plasma electrons have a mean free path of 1-
10 m, so they contribute little secondary ionization before they strike the wall.

The second stage occurs after the beam pulse has ended. A hot, positive ion column
remains behind. In the absence of collisions and neutralizing electrons, the ion column radius
will typically expand to the wall radius within 100 nsec. This effect has been seen in
FRIEZR simulations.4S Charge exchange appears to be the dominant atomic collision

process in a multi-pulse IFR cell; in some cases, the mean free path for this process may be
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comparable with the beam radius.5! However, the fast peutrals which it produces tend to be
lost to the walls without significantly heating the bulk of the neutral gas. Some plasma
electrons may be available to neutralize the expanding ion column, especially if a reservoir of
available plasma exists at the IFR cell wall. However, FRIEZR simulations*S of ion channel
motion in the Recirculating Linear Accelerator,*®:52 which has beam and channel densities
comparable to those in ATA, indicate that the ion column can be expected to expand to a
radius comparable with the tube radius a,, before being neutralized. This occurs because the
hot neutralizing electrons which are drawn toward the ion channel have a line density N,
which cannot exceed the ion channel line density N; and are spread more or less uniformly
inside the cell. Thus, their space charge field does not appreciably slow the expansion of the
ion column until the ion channel radius is comparable to a,,,.

The third stage extends from the time for the ions to expand to the wall (~100 nsec)
until the beginning of the next pulse (~1 msec). The above discussion suggests that by the
time the next pulse arrives, most of the ions will have either been lost or will be spread
throughout the IFR cell. If energy is transferred to neutrals via charge exchange, those
particles will presumably be lost to the wall.®! Very little hole boring will have taken place
because all of the relevant mean free paths are much larger than the beam radius. Thus, the
next pulse should enter a cell whose neutral density is essentially unchanged from that
present during the first pulse.

In summary, if an IFR cell is used to tailor a series of beam pulses separated by
~1 msec, the first pulse will create an IFR plasma column but will not bore a density channel.
Substantial plasma may be produced, especially by ejected plasma electrons striking the
walls. However, this plasma should not neutralize the ion column until its radius is a
substantial fraction of the wall radius. The second pulse may encounter a diffuse plasma, but
this should not affect the beam provided the plasma density remains well below that of the
channel formed by the second pulse. Thus, we expect subsequent pulses to be tailored in a
similar manner to the first pulse.

Beam radius data taken from the Multi-Pulse Propagation Experiment on ATA support
this view.> A series of five pulses with 7, = 2-5 msec was injected into a passive IFR cell,

and the beam radius profile a,(r) for each pulse was measured after it exited the IFR cell
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using light emitted from a foil i
s quartz foil. The profiles showed little or no variation from pulse to
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V. CONCLUSIONS

Passive IFR cells offer a powerful technique for shaping the radius and emittance
profile of an electron beam prior to injection into a dense gas. Even with the simplest
configuration, these profiles can be readily adjusted by varying the pressure in the IFR cell,
the thicknesses of the IFR entrance and exit foils and the length and radius of the cell.
Additional control may be obtained by using a focusing lens ahead of the IFR cell. Passive
IFR tailoring cells can also be used in conjunction with other techniques designed to center
the beam or damp initial fluctuations. All of these configurations have been simulated with
the FRIEZR beam simulation code and have been successfully deployed experimentally.
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APPENDIX: FRIEZR SIMULATION CODE

A. General Description

The simulations reported in this paper were performed using the FRIEZR code.’
FRIEZR is a particle simulation code in which particles are advanced in time t with a fully-
relativistic particle pusher. Fields are derived from solutions to the full Maxwell’s equations.
Ultrarelativistic and paraxial approximations, which are often employed in beam codes, are
not used in FRIEZR. However, the axial variable is r = =t - z/c, rather than z, and the axial
grid is divided into slices with uniform width Ar. Relativistic beam particles have nearly
constant r and thus remain within the same beam slice for many time steps. The code is
organized so that only particles from one r-slice are in core at any one time; careful
bookkeeping and I/O management are thus required to keep track of particles slipping from
one slice to the next. The field equations are solved as functions of r,  and t, but beam and
plasma particles are pushed in Cartesian coordinates. A Courant condition exists which
requires the time step At and axial grid step Ar to satisfy At < Ar/2. Typical conditioning
cell simulations employ 100-400 beam slices with 500-1000 beam particles per slice. The
original code is described in more detail by Krall, et al.4#’ This Appendix describes features
which have been added specifically to treat IFR conditioning cells. Note that Ref. 47 uses
§ = ct as the axial variable.

The dynamics of plasma electrons and ions occur on very disparate time scales. For
high current electron beams, plasma electrons are quickly accelerated radially with velocities
which approach ¢ and are thus expelled from the beam on a time scale ~a,/c < 0.1 nsec. Ions
collapse inward on a time scale that is slower by a factor (milm,)m. FRIEZR provides for
three options for treating plasma particle motion: (1)Use particle simulation to compute
clectron and ion flow (often very expensive). (2)Freeze the ions and simulate the electron
motion (appropriate for short time scales). (3)Assume plasma electrons are instantaneously
ejected and use simulation particles to follow the ion motion. The latter approach has been
used in the simulations reported in this paper. This assumption makes it much more
economical to treat the long beams which are used in present experiments but does not treat

inductive erosion.4’
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Creation of plasma by beam impact ionization is an essential feature of passive IFR
conditioning cells. In the studies reported here, FRIEZR assumes an ionization cross section
o; = 10"'® cm? for relativistic electrons impacting neutral gas. A fixed number N,p of
simulation plasma electrons and/or ions are created in each axial grid cell at each time step.
The plasma particles are created at the instantaneous locations of N, simulation beam
particles which have been selected at random. The charge of the secondary particles is
weighted relative to beam particles by

Ws = aingNs

W
8

b

where 8t is the simulation time step, n, is the gas density, W, = I, (7)/I,, is the weight
associated with simulation beam particles in a particular r-slice, and N, is the number of
simulation beam particles in an axial grid cell. Beam-generated ionization causes the plasma
density to increase with 7, causing the beam head to be less strongly pinched than the body.

The original FRIEZR code*’ treated propagation in a preionized plasma channel such
as that produced by laser ionization of a low density target gas. Such channels were
extensively used on ATA.4-339-41.45 FRIEZR generates preionized plasma channels by
bringing in new plasma particles into the r = 0 beam slice at each time step. The laser-
produced channel density may also be ramped up experimentally during the electron beam
pulse by turning the laser on during the beam pulse. This "laser timing" technique was
extensively used on the ATA accelerator to fine-tune the beam pulse.s'”'“ Since laser
timing creates a channel whose density increases during the pulse, the resulting beam radius
profile is similar to that produced by beam impact ionization. FRIEZR treats laser timing in
the same manner as beam-generated ionization; however, electron-ion pairs are created from
a "phantom" set of particle positions chosen to reproduce the radial profile of laser-produced
ionization.

Although z is not an independent variable in the FRIEZR code, most time-resolved
experimental diagnostics are measured at a fixed z-location. In order to facilitate
experimental comparisons, FRIEZR dumps data for each 7-slice at specified "diagnostics
stations" at fixed z locations, using the variable change z = ct - r. The primary quantity of

interest in beam conditioning studies is the half-current radius a,,(r), defined as the radius
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enclosing 50% of the simulation particles remaining in the system at a given z-location. The
mms radius a_ , is less useful because it may be strongly influenced by a "halo” of particles at
a large radius.!843 However, FRIEZR calculates the emittance using the formal definition of
Lee and Cooper!? which is based on the rms radius. The code also calculates a variety of
plasma and electromagnetic field quantities.

FRIEZR allows the wall radius, gas density, preionized channel density and axial
magnetic field to be varied in a piecewise-linear fashion with z. This capability makes it easy
to treat complicated configurations including hybrid conditioning cells such as those
described in Section III. In addition, FRIEZR can include discrete beamline elements such as
foils and thin magnetic lenses. These may be located at any axial position z = z; . Magnetic
lenses are treated by specifying a focal length f;. As it passes through the lens, each
simulation particle is given an impulse 5p,/p, = -x/f and 8p,/p, = -y/f, where x and y are
the particle coordinates at z = z; and p, = v mc is the nominal beam momentum at injection.
Magnetic lenses were extensively used to fine-tune the beam taper on ATAS

Foils are widely used to separate different beamline sections. FRIEZR treats scattering
by a foil by specifying a characteristic scattering angle A8, based on the foil composition,
thickness and nominal beam energy. For example, a titanium foil of thickness T (in mils)
produces a scattering angle A§,_ = T}n/-y. The impulse given individual simulation particles
is chosen at random from a gaussian distribution with width A6,..

In addition, a conducting foil produces a focusing impulse similar to that produced by a
thin lens; this is because the radial electric field E, produced by the beam is shorted out by
the foil. This process has been modeled by Adler,’ Humphries and Ekdah!*® and Femsler, et
al.>’ FRIEZR employs a variation of Adler’s thin lens approximation to treat foil focusing.
The impulse has the form given by’

Of = -6pr/'ymc = Ff (r/ab) (r/ab) Ib/'yIo . (A-2)
The function F(r) is typically 1-3 and varies weakly with r and a,/a, and is slightly different

for different assumed current density profiles. The effective focal length of this thin "lens” is
approximately a,/6;. For high current, moderate energy beams such as those produced by
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SuperIBEX, the focusing angle 6, can be quite steep, and the focal length may be only a few
centimeters. This "overfocusing” effect may degrade the beam significantly.5’-8

A three-dimensional version of FRIEZR, called ELBA,30-52.63 j5 capable of treating a
variety of effects such as ion hose*>#4-! and electron hose? instabilities which are neglected
by FRIEZR. Preliminary results suggest that these effects are not important in passive IFR
cells.
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FIGURE CAPTIONS

FIG. 1. Schematic diagrams of IFR tailoring cell configurations. Simple passive IFR cell (a)
uses a thin entrance foil (F1) and a thicker exit foil (F2). the region between the two foils
contains a low density gas. In configuration (b), the IFR cell is preceded by a vacuum
transport region with a focusing lens to control the rate of beam expansion at the entrance foil
(F1).

FIG. 2. Schematic diagrams of IFR tailoring cells combined with various centering cells.
The active IFR / passive IFR configuration (a) employs a centering cell with a plasma
channel (CH) created by a laser or low energy electron beam. The two-stage passive IFR cell
(b) uses a passive IFR cell with a higher gas density and smaller wall radius to center the
beam prior to injection into the tailoring cell. The IFR / wire cell hybrid configuration (c)
uses a current-carrying wire (W) to center the beam after it has been tailored. The foils (F1-
F3) may be relatively thin. The wire cell may be operated in vacuum or in full density air.

FIG. 3. Normalized emittance e (7) at z = 90 cm for Cases 1-A, 1-B, 1-C, 1-D and 1-E.
Emittance for Cases 1-A, 1-B and 1-D remain near their injected values except for cooling
due to particle loss in the beam head seen in Case 1-D. Cases 1-C and 1-E both show

emittance growth in beam body due to overpinching by the strong ion channel.

FIG. 4. Comparison of beam radius from fixed ion FRIEZR simulation Case 1-A with the
corresponding analytical solution from Egs. (5) and (6).

FIG. 5. Beam half-current radius a,,(7) at z = 30, 90 and 150 cm for Case 1-B. The beam
head expands freely while the body is nearly in equilibrium.

FIG. 6. Beam expansion rate da/dz versus 7 at z = 30, 90 and 150 cm for the case shown in

Fig. §.
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FIG. 7. Plot of beam half-current and rms radii a,, and a,,,, versus r at z = 90 cm from
FRIEZR simulation Case 1-B. IFR cell pressure is 5 mtorr.

FIG. 8. Plot of a,,(7) and a.,,,,(7) at z = 90 cm for the 20 mtorr IFR cell Case 1-C. Beam
radius contracts more quickly in the beam head and is essentially constant for 7 > 20 nsec.

FIG. 9. Evolution of beam radius a;;(z) at 7 = 4, 20 and 40 nsec from simulation Case 2-D.
Nominal focal length for the upstream lens is 114 cm. The slice in the beam head
(7 = 4 nsec) reaches its minimum radius near the geometric focal point, while later slices
focus further downstream due to space charge effects. This results in a relatively large
minimum beam radius at the IFR exit foil. Note that this figure was reconstructed from
a,,,(7) data dumped at a small number of z-locations, so the gridding in the code
(cAt = 1.5 cm) is much smaller than that indicated in the figure.

FIG. 10. Beam radius a,,(z) for the same three slices for a simulation with f; reduced to
90 cm (Case 2-H). This causes the beam body to focus near the IFR entrance foil, resulting

in a smaller minimum radius at the IFR exit foil.

FIG. 11. Beam radius profile a,,(7) at the IFR exit foil for upstream focal length f; = 70, 90
and 114 cm (Cases 2-L, 2-H and 2-D). Optimal tailoring is exhibited by the f; = 90 cm case.

FIG. 12. Emittance profile e,(7) at the IFR exit foil for the three cases shown in Fig. 11.
FIG. 13. Effect of the IFR entrance foil scattering angle on the beam radius profile a, () at
the IFR exit foil. Scattering angle A6, = 0.031, 0.045 and 0.063 for the three simulations

(Cases 2-G, 2-H and 2-J).

FIG. 14. Beam radius a,,(7) at the end of the tailoring cell for three difierent values of the
laser-IFR cell channel strength f,. Simulation cases are 3-A, 3-B and 3-C. Best results are
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obtained with the intermediate value f, = 0.05 (Case 3-B). Both strong and weak channel
cases result in a larger final radius and a less desirable tailoring profile.

FIG. 15. Emittance profile ¢ (r) at the end of the tailoring cell for the three simulations
shown in Fig. 14.

FIG. 16. Plot of beam radius a; (1) at three different locations from a simulation of a laser-
IFR centering cell followed by a passive IFR tailoring cell (Case 3-B). The z = 60 cm curve
is in the middie of the centering cell, while the other two locations are at possible locations
for the IFR exit foil.

FIG. 17. Simulation of a SuperIBEX "foilless" two-stage IFR cell with P; = 20 mtorr and
P, = 10 mtorr (Case 4-A). The z = 50 cm location is near the middle of the centering cell,
while z = 120 cm is at the end of the tailoring cell. The final radius profile a, (1) exhibits
fairly good tailoring, but has a substantial region in the beam head where it is relatively flat.

FIG. 18. Comparison of the beam radius profile at the tailoring cell exit for two-stage IFR
simulations 4-A, 4-B and 4-C. Case 4-B has P, reduced to S mtorr, resulting in a relatively
flat tailoring profile and a larger minimum radius. Case 4-C is a repeat of the P, = 10 mtorr
Case (4-A) but includes the effects of foil focusing. The inclusion of foil focusing degrades
the beam radius profile significantly.

FIG. 19. Comparison of the transported current I, (7) at the tailoring cell exit for simulations
with and without foil focusing (Cases 4-C and 4-A). The current loss seen in presence of the
foil is due to an overfocusing effect which causes the beam to expand rapidly in the tailoring

cell following its initial collapse after passing through the foil.
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